Project References
TypeScript 3.0 introduces a new concept of project references. Project references allow TypeScript projects to depend on other TypeScript projects - specifically, allowing tsconfig.json
files to reference other tsconfig.json
files. Specifying these dependencies makes it easier to split your code into smaller projects, since it gives TypeScript (and tools around it) a way to understand build ordering and output structure.
TypeScript 3.0 also introduces a new mode for tsc, the --build
flag, that works hand-in-hand with project references to enable faster TypeScript builds.
See Project References handbook page for more documentation.
Tuples in rest parameters and spread expressions
TypeScript 3.0 adds support to multiple new capabilities to interact with function parameter lists as tuple types. TypeScript 3.0 adds support for:
- Expansion of rest parameters with tuple types into discrete parameters.
- Expansion of spread expressions with tuple types into discrete arguments.
- Generic rest parameters and corresponding inference of tuple types.
- Optional elements in tuple types.
- Rest elements in tuple types.
With these features it becomes possible to strongly type a number of higher-order functions that transform functions and their parameter lists.
Rest parameters with tuple types
When a rest parameter has a tuple type, the tuple type is expanded into a sequence of discrete parameters. For example the following two declarations are equivalent:
declare function foo(...args: [number, string, boolean]): void;
declare function foo(args_0: number, args_1: string, args_2: boolean): void;
Spread expressions with tuple types
When a function call includes a spread expression of a tuple type as the last argument, the spread expression corresponds to a sequence of discrete arguments of the tuple element types.
Thus, the following calls are equivalent:
const args: [number, string, boolean] = [42, "hello", true];
foo(42, "hello", true);
foo(args[0], args[1], args[2]);
foo(...args);
Generic rest parameters
A rest parameter is permitted to have a generic type that is constrained to an array type, and type inference can infer tuple types for such generic rest parameters. This enables higher-order capturing and spreading of partial parameter lists:
Example
declare function bind<T, U extends any[], V>(f: (x: T, ...args: U) => V, x: T): (...args: U) => V;
declare function f3(x: number, y: string, z: boolean): void;
const f2 = bind(f3, 42); // (y: string, z: boolean) => void
const f1 = bind(f2, "hello"); // (z: boolean) => void
const f0 = bind(f1, true); // () => void
f3(42, "hello", true);
f2("hello", true);
f1(true);
f0();
In the declaration of f2
above, type inference infers types number
, [string, boolean]
and void
for T
, U
and V
respectively.
Note that when a tuple type is inferred from a sequence of parameters and later expanded into a parameter list, as is the case for U
, the original parameter names are used in the expansion (however, the names have no semantic meaning and are not otherwise observable).
Optional elements in tuple types
Tuple types now permit a ?
postfix on element types to indicate that the element is optional:
Example
let t: [number, string?, boolean?];
t = [42, "hello", true];
t = [42, "hello"];
t = [42];
In --strictNullChecks
mode, a ?
modifier automatically includes undefined
in the element type, similar to optional parameters.
A tuple type permits an element to be omitted if it has a postfix ?
modifier on its type and all elements to the right of it also have ?
modifiers.
When tuple types are inferred for rest parameters, optional parameters in the source become optional tuple elements in the inferred type.
The length
property of a tuple type with optional elements is a union of numeric literal types representing the possible lengths.
For example, the type of the length
property in the tuple type [number, string?, boolean?]
is 1 | 2 | 3
.
Rest elements in tuple types
The last element of a tuple type can be a rest element of the form ...X
, where X
is an array type.
A rest element indicates that the tuple type is open-ended and may have zero or more additional elements of the array element type.
For example, [number, ...string[]]
means tuples with a number
element followed by any number of string
elements.
Example
function tuple<T extends any[]>(...args: T): T {
return args;
}
const numbers: number[] = getArrayOfNumbers();
const t1 = tuple("foo", 1, true); // [string, number, boolean]
const t2 = tuple("bar", ...numbers); // [string, ...number[]]
The type of the length
property of a tuple type with a rest element is number
.
New unknown
top type
TypeScript 3.0 introduces a new top type unknown
.
unknown
is the type-safe counterpart of any
.
Anything is assignable to unknown
, but unknown
isn’t assignable to anything but itself and any
without a type assertion or a control flow based narrowing.
Likewise, no operations are permitted on an unknown
without first asserting or narrowing to a more specific type.
Example
// In an intersection everything absorbs unknown
type T00 = unknown & null; // null
type T01 = unknown & undefined; // undefined
type T02 = unknown & null & undefined; // null & undefined (which becomes never)
type T03 = unknown & string; // string
type T04 = unknown & string[]; // string[]
type T05 = unknown & unknown; // unknown
type T06 = unknown & any; // any
// In a union an unknown absorbs everything
type T10 = unknown | null; // unknown
type T11 = unknown | undefined; // unknown
type T12 = unknown | null | undefined; // unknown
type T13 = unknown | string; // unknown
type T14 = unknown | string[]; // unknown
type T15 = unknown | unknown; // unknown
type T16 = unknown | any; // any
// Type variable and unknown in union and intersection
type T20<T> = T & {}; // T & {}
type T21<T> = T | {}; // T | {}
type T22<T> = T & unknown; // T
type T23<T> = T | unknown; // unknown
// unknown in conditional types
type T30<T> = unknown extends T ? true : false; // Deferred
type T31<T> = T extends unknown ? true : false; // Deferred (so it distributes)
type T32<T> = never extends T ? true : false; // true
type T33<T> = T extends never ? true : false; // Deferred
// keyof unknown
type T40 = keyof any; // string | number | symbol
type T41 = keyof unknown; // never
// Only equality operators are allowed with unknown
function f10(x: unknown) {
x == 5;
x !== 10;
x >= 0; // Error
x + 1; // Error
x * 2; // Error
-x; // Error
+x; // Error
}
// No property accesses, element accesses, or function calls
function f11(x: unknown) {
x.foo; // Error
x[5]; // Error
x(); // Error
new x(); // Error
}
// typeof, instanceof, and user defined type predicates
declare function isFunction(x: unknown): x is Function;
function f20(x: unknown) {
if (typeof x === "string" || typeof x === "number") {
x; // string | number
}
if (x instanceof Error) {
x; // Error
}
if (isFunction(x)) {
x; // Function
}
}
// Homomorphic mapped type over unknown
type T50<T> = { [P in keyof T]: number };
type T51 = T50<any>; // { [x: string]: number }
type T52 = T50<unknown>; // {}
// Anything is assignable to unknown
function f21<T>(pAny: any, pNever: never, pT: T) {
let x: unknown;
x = 123;
x = "hello";
x = [1, 2, 3];
x = new Error();
x = x;
x = pAny;
x = pNever;
x = pT;
}
// unknown assignable only to itself and any
function f22(x: unknown) {
let v1: any = x;
let v2: unknown = x;
let v3: object = x; // Error
let v4: string = x; // Error
let v5: string[] = x; // Error
let v6: {} = x; // Error
let v7: {} | null | undefined = x; // Error
}
// Type parameter 'T extends unknown' not related to object
function f23<T extends unknown>(x: T) {
let y: object = x; // Error
}
// Anything but primitive assignable to { [x: string]: unknown }
function f24(x: { [x: string]: unknown }) {
x = {};
x = { a: 5 };
x = [1, 2, 3];
x = 123; // Error
}
// Locals of type unknown always considered initialized
function f25() {
let x: unknown;
let y = x;
}
// Spread of unknown causes result to be unknown
function f26(x: {}, y: unknown, z: any) {
let o1 = { a: 42, ...x }; // { a: number }
let o2 = { a: 42, ...x, ...y }; // unknown
let o3 = { a: 42, ...x, ...y, ...z }; // any
}
// Functions with unknown return type don't need return expressions
function f27(): unknown {
}
// Rest type cannot be created from unknown
function f28(x: unknown) {
let { ...a } = x; // Error
}
// Class properties of type unknown don't need definite assignment
class C1 {
a: string; // Error
b: unknown;
c: any;
}
Support for defaultProps
in JSX
TypeScript 2.9 and earlier didn’t leverage React defaultProps
declarations inside JSX components.
Users would often have to declare properties optional and use non-null assertions inside of render
, or they’d use type-assertions to fix up the type of the component before exporting it.
TypeScript 3.0 adds support for a new type alias in the JSX
namespace called LibraryManagedAttributes
.
This helper type defines a transformation on the component’s Props
type, before using to check a JSX expression targeting it; thus allowing customization like: how conflicts between provided props and inferred props are handled, how inferences are mapped, how optionality is handled, and how inferences from differing places should be combined.
In short using this general type, we can model React’s specific behavior for things like defaultProps
and, to some extent, propTypes
.
export interface Props {
name: string;
}
export class Greet extends React.Component<Props> {
render() {
const { name } = this.props;
return <div>Hello {name.toUpperCase()}!</div>;
}
static defaultProps = { name: "world"};
}
// Type-checks! No type assertions needed!
let el = <Greet />
Caveats
Explicit types on defaultProps
The default-ed properties are inferred from the defaultProps
property type. If an explicit type annotation is added, e.g. static defaultProps: Partial<Props>;
the compiler will not be able to identify which properties have defaults (since the type of defaultProps
include all properties of Props
).
Use static defaultProps: Pick<Props, "name">;
as an explicit type annotation instead, or do not add a type annotation as done in the example above.
For function components (formerly known as SFCs) use ES2015 default initializers:
function Greet({ name = "world" }: Props) {
return <div>Hello {name.toUpperCase()}!</div>;
}
Changes to @types/React
Corresponding changes to add LibraryManagedAttributes
definition to the JSX
namespace in @types/React
are still needed.
Keep in mind that there are some limitations.
/// <reference lib="..." />
reference directives
TypeScript adds a new triple-slash-reference directive (/// <reference lib="name" />
), allowing a file to explicitly include an existing built-in lib file.
Built-in lib files are referenced in the same fashion as the "lib"
compiler option in tsconfig.json (e.g. use lib="es2015"
and not lib="lib.es2015.d.ts"
, etc.).
For declaration file authors who relay on built-in types, e.g. DOM APIs or built-in JS run-time constructors like Symbol
or Iterable
, triple-slash-reference lib directives are the recommended. Previously these .d.ts files had to add forward/duplicate declarations of such types.
Example
Using /// <reference lib="es2017.string" />
to one of the files in a compilation is equivalent to compiling with --lib es2017.string
.
/// <reference lib="es2017.string" />
"foo".padStart(4);